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Nitric oxide (NO) is important physiologically as a gaseous Scheme 1. Schematic of the Surface Modification Strategy

messenger in the central nervous systétsjevel is also associated OHOH OH OH OHOH
with several disease state§he concentration of NO in these cases
is in the nanomolar range; therefore accurate and direct detection

HobH

of NO at these levels is important. NO is also a decomposition

product of several explosivéso detection of trace amounts of

explosive, for example in security screening, also requires a sensitive — & 1
NO assay. Thus it is not surprising that a large variety of NO

detection systems have been discussed for implementation in these \

/cﬁ b oh0 %%7

applications.

NO is now detected using fluorescerfcehemiluminescence,
electrochemistry,electron paramagnetic resonance spectronietry,
and electricdmethods. These techniques employ surface-modified
metals or semiconductors, usually as electrodes, that are treated
chemically or physically to increase their interaction with NO. A
range of strategies has been used for modifying these electrodes

for this purpose. One common surface modification technique is o1 05

to coat the electrode with a metalaporphyrin: NO binds to the iron

atom of the hemelike molecufeexperimental and computational

studies have elucidated the geometric and vibrational features of

heme-NO binding? Iron porphyrins are more reactive to NO than /%o 0% 050 /0 o 0%, 0,0 67/‘

either to Q or CO}!* which makes them a good choice for use in
detection of NO in a competitive environment where CO or O  give adducts (Scheme 1). Caution: NO is toxic, so care must be
could be present. Clearly, the stability of the interface between a taken to work in a well-ventilated hood.
sensor device and the NO-binding surface heme complex is critical  The quantitative interaction of NO withwas studied by XPS.
for device lifetime, as is the quantitative control of surface Pure nitric oxide (MGI) was passed owin a chamber that had
modification for measurement reproducibility. We now report a been purged with argon to remove oxygen to avoid formation of
new method to stably bond monolayers of an iron heme complex NO,. The resulting addudi was then transferred into UHV (base
onto silicon that enables direct, quantitative detection of NO atlow pressure, 5¢< 10°° Torr) for XPS analysis. The survey spectrum
levels. of 5 was similar to that ot except that two new peaks appeared
We have described bonding self-assembled monolayers ofin the N1s region. In contrast # which shows a single peak, N2,
organophosphates onto oxide surfatahese monolayer interfaces  (BE = 399.5 eV) in the Nis region attributed to the nitrogens of
are stable to air and watét.In particular we have found these the hematin molecule, the N1s region Bfhas three peaks
monolayers to be dense and ordered films on oxide terminated (Figure 1).
silicon1* We used a monolayer formed from 11-hydroxyunde-  The peaks at 398 (N1) and 399.5 eV are attributed to nitrogens
cylphosphonic acidl) on SiG/Si as our reactive platform to attach  from 5 and from unreacted, respectively, and the peak at 405.2
NO-bonding molecule hematin. Several drops of aq HCI were added eV (N3) is attributed to the N1s of iron bound NO. The shift to
to a 10uM solution of hematin (Aldrich) in ChkCl,, which was lower binding energy for the heme nitrogens5ods compared to
then heated with a 660M solution of SOC} under inert atmosphere 4 can be explained by noting that NO, a free radical, bonds to iron
for 24 h to give its diacyl chloride3. That both carboxylic acid as the nitrosyl ligand by a formal I e@eduction of the metaf A
groups of the hematin were converted to the acyl chloride was similar decrease in the binding energy of the Fe2p peak was also
confirmed by IR, which showed replacementigé—o)-on (1710 observed (Figure 2).

NO N
-H0)

cm™Y) by vc=o0)-ci (1800 cnt?) (see Supporting Information). The ratio of peak areas for N3 and N1 (Figure 1) is 1:4, consistent
Heme-terminated surfagewas then obtained by treatiriwith a with the expected stoichiometry of the hematMO complex5.
solution of 3 in dry CHCI, under inert atmosphere for 24 h, The sum of areas under the N1 and N2 peaks efuals the area
followed by sonication successively with @El, and water. of the peak under the N1s peak&fwhich confirms that the peak

Coupons of4 were then transferred into ultrahigh vacuum at 405.2 eV is in fact due to NO attachment and not to the
(UHV) for X-ray photoelectron spectroscopic analysis (XPS). The degradation of the hematin complex (see Supporting Information).
survey scan oft showed distinct peaks in the N1s and Fe2p regions,  Quartz crystal microgravimmetry (QCM) studiéshowed that
which confirms the attachment of hematin on the surface (see the coverage ofl on SiQ/Si is 850 pmol/cri (5%), and the
Supporting Information). Surfacé was then treated with NO to  loading of3 on 1 is 300 pmol/cm (£6%). Before we could estimate
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based on mass spectrometry stratédiand is about one-tenth as
sensitive (in terms of absolute quantity detected) as the most
sensitive systems, such as those based on resonance enhanced
multiphoton ionization mass spectrométrgr frequency modula-

tion spectrometry?

We have shown that direct detection of NO can be achieved by
XPS as a surface-attached hematin complex on the native oxide of
silicon. Given the silicon platform used for this study, it is possible
that our surface-modification strategy might be implemented on a
silicon-based device for direct electrical detection of NO; indeed,
this strategy is currently under investigation.
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Figure 1. Detailed scan in the N1s region of @pnd (b)5. N1 is attributed Supporting Information Available: A detailed description of

to reacted hematin, N2 is attributed to unreacted hematin, and N3 is from monolayer formation of2; XPS analysis procedure; IR spectra of

hematin-bound NO (Scheme 1). hematin and; XPS survey spectrum @, calculation of relative areas

of N1s peaks oft and5. This material is available free of charge via

Fe3py,) the Internet at http://pubs.acs.org.
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